第四百九十章氦3原子探针(求订阅) (2 / 5)

 热门推荐:
        核聚变产生的高温,那是高达5000万摄氏度甚至是一亿摄氏度,这么高的温度,没有任何一种材料可以承受这么高的温度。所以,从一开始科学家们研究可控核聚变,从未想过去研发一种可以承受5000万摄氏度甚至是一亿摄氏度高温的材料。

        从一开始,可控核聚变的思路就是通过磁场约束聚变高温区域,使得装置材料并不与聚变高温区域接触,这一点上,不管是托卡马克还是仿星器,亦或者秦元清设计的‘金乌装置’,本质上都是一样的。

        托卡马克是利用很多束在空间方位上均匀分布于各个角度的激光产生的光压来使核聚变材料束缚在中间。仿星器是利用环形的电磁场使得聚变材料被限制在一个环形内,从而达到束缚的目的。

        而之所以到目前两种装置的可控核聚变实验都还停留在秒的时代,就是因为不管是托卡马克还是仿星器,都无法保证核聚变过程中对聚变的核燃料的有效束缚。可能核聚变最初一段时间里还能维持,但到了中后期,肯定会变得混乱!

        而秦元清设计的‘金乌装置’,实际上形状如八卦,中间的两个鱼眼不断进行反应,而高温则是被限制在八卦形状内,使得在这个强大磁场内部,高温不会直接与装置材料相接触,从而保证反应的发生和持续。

        不过这个装置,需要he3原子探针技术,以确保能够随时探测反应装置里面的反应。

        在理论物理学界的前沿研究领域中,对于一个难以预测的混沌系统,比较常见的做法便是扔一颗粒子进去探探路。通过对该粒子的观察,间接对该系统进行观察。

        而装置中可控核聚变的关键燃料是氦3,不是氘也不是氚,氘与氚反应是要形成氦3的,氦3才是进行核聚变反应的,因此探测氦3才是真正关键。

        再者氦3的原子直径足够小,原子核结构稳定,不但从概率意义上尽可能避免了难以区分的多原子碰撞,而且更易于从等离子体中穿过。

        通过he3原子探针来观测氦3原子,就有着重大意义,以氦3原子的观测简介还窥探核聚变反应的情况。

        内容未完,下一页继续阅读